R/cyto_stats_compute-methods.R
cyto_stats_compute-GatingSet-method.Rd
Calculate and export flow cytometry statistics for a GatingSet.
# S4 method for GatingSet cyto_stats_compute(x, alias = NULL, parent = NULL, channels = NULL, trans = NULL, stat = "median", density_smooth = 1.5, save = TRUE)
x | object of class
|
---|---|
alias | name(s) of the population(s) for which the statistic should be calculated. |
parent | name(s) of the parent population(s) used calculate population frequencies. The frequency of alias in each parent will be returned as a percentage. |
channels | names of of channels for which statistic should be calculated, set to all channels by default. |
trans | object of class
|
stat | name of the statistic to calculate, options include
|
density_smooth | smoothing parameter passed to
|
save | logical indicating whether statistical results should be saved to a csv file. |
#>#>#>#>#># Apply compensation gs <- compensate(gs, fs[[1]]@description$SPILL) # Transform fluorescent channels trans <- estimateLogicle(gs[[4]], cyto_fluor_channels(gs)) gs <- transform(gs, trans) # Gate using gate_draw gt <- Activation_gatingTemplate gating(gt, gs)#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#>#># Compute statistics cyto_stats_compute(gs, alias = "T Cells", channels = c("Alexa Fluor 488-A", "PE-A"), stat = "median", save = FALSE )#> $`T Cells` #> Alexa Fluor 488-A PE-A #> Activation1.fcs 4180.007 18403.25 #> Activation2.fcs 5425.652 18804.82 #> Activation3.fcs 6591.920 19982.24 #> Activation4.fcs 6640.713 20150.04 #>#> $`T Cells` #> FSC-A FSC-H FSC-W SSC-A SSC-H SSC-W #> Activation1.fcs 63148.35 56239.63 73586.73 16843.02 15607.64 70723.31 #> Activation2.fcs 64327.43 57226.32 73668.25 17327.90 15965.97 71126.35 #> Activation3.fcs 63909.59 56645.13 73940.67 17530.46 16083.35 71432.66 #> Activation4.fcs 68037.33 59457.69 74992.73 19594.85 17684.49 72615.49 #> Alexa Fluor 488-A PE-A PE-Texas Red-A 7-AAD-A PE-Cy7-A #> Activation1.fcs 1217.322 17341.62 137.51647 317.9252 42.42112 #> Activation2.fcs 1385.521 17718.57 94.35408 363.7834 48.84971 #> Activation3.fcs 1656.352 18853.10 78.29665 423.6506 41.93059 #> Activation4.fcs 1790.204 18974.67 71.80785 640.7608 47.10880 #> Alexa Fluor 405-A Alexa Fluor 430-A Qdot 605-A #> Activation1.fcs 57.90289 64.22004 513.5104 #> Activation2.fcs 64.14434 67.69243 543.4810 #> Activation3.fcs 69.36829 74.87729 608.3986 #> Activation4.fcs 77.96001 81.71592 613.3975 #> Alexa Fluor 647-A Alexa Fluor 700-A APC-Cy7-A Time #> Activation1.fcs 604.3573 391.3962 4.251436 2123.737 #> Activation2.fcs 615.4023 384.3474 4.379078 2005.908 #> Activation3.fcs 704.4741 347.3969 1.626191 1976.461 #> Activation4.fcs 949.2146 361.1098 6.565321 2086.956 #>#> $`CD4 T Cells` #> count #> Activation1.fcs 1955 #> Activation2.fcs 2212 #> Activation3.fcs 2134 #> Activation4.fcs 2133 #> #> $`CD8 T Cells` #> count #> Activation1.fcs 2636 #> Activation2.fcs 3191 #> Activation3.fcs 3585 #> Activation4.fcs 3562 #>cyto_stats_compute(gs, alias = c("CD4 T Cells", "CD8 T Cells"), parent = c("Live Cells", "T Cells"), stat = "freq", save = FALSE )#> $`CD4 T Cells` #> count Live Cells T Cells #> Activation1.fcs 1955 13.08392 38.85135 #> Activation2.fcs 2212 13.44926 37.67672 #> Activation3.fcs 2134 12.58255 34.16040 #> Activation4.fcs 2133 12.83239 33.71799 #> #> $`CD8 T Cells` #> count Live Cells T Cells #> Activation1.fcs 2636 17.64155 52.38474 #> Activation2.fcs 3191 19.40171 54.35190 #> Activation3.fcs 3585 21.13797 57.38755 #> Activation4.fcs 3562 21.42943 56.30730 #>